Działanie silnika wodorowego jest prostym, kilkuetapowym procesem. Pierwszy etap opiera się na doprowadzenia wodoru ze zbiornika do ogniwa, do którego przy użyciu turbosprężarki, równolegle jest dostarczane powietrze. Następny krok to transmisja prądu stałego z ogniwa do przetwornicy trakcyjnej, w której zmieniany jest on na prąd
Silniki elektryczne indukcyjne, klatkowe, trójfazowe. Trójfazowe silniki indukcyjne ze względu na prostą budowę, łatwość obsługi, niskie koszty wykonania i eksploatacji, znajdują szerokie zastosowanie jako silniki ogólnego przeznaczenia do napędu wielu różnych maszyn stosowanych w przemyśle , rolnictwie i gospodarstwie domowym w zakresie mocy od kilku do kilkuset kilowatów. 1. Budowa i zasada działania: Silnik elektryczny trójfazowy, klatkowy, asynchroniczny jest maszyną elektryczną zamieniająca energię elektryczną w energię mechaniczną. Składa się z dwóch zasadniczych części: ruchomej – wirnika wykonanego z blach elektrotechnicznych w formie walca ze żłobkami wypełnionymi aluminiowymi lub miedzianymi prętami połączonymi czołowo pierścieniami z tego samego materiału, tworzących klatkę. Pręty wirnika ułożone są na ogół skośnie do osi wirowania .To rozwiązanie korzystnie wpływa na rozruch silnika nieruchomej – stojana wykonanego również z blach elektrotechnicznych, izolowanych jednostronnie i złożonych w pakiety. W żłobkach stojana ułożone jest uzwojenie (cewki z drutu nawojowego miedzianego),które może być uzwojeniem dwu lub wielobiegunowym. Trzy jego gałęzie umieszczone są w pakiecie stojana i przesunięte wzajemnie o 120 stopni elektrycznych. Końce trzech gałęzi uzwojeń połączonych razem, tworzą połączenie w gwiazdę. Połączenie w trójkąt powstanie jeżeli koniec każdej z gałęzi połączy się z początkiem następnej. Schematy łączenia uzwojeń silnika w gwiazdy i trójkąt: a) uzwojenia nie skojarzone; b) uzwojenia połączone w gwiazdę; c) uzwojenia połączone w trójkąt Po przyłączeniu napięcia z sieci trójfazowej do uzwojenia stojana, powstaje pole magnetyczne wirujące, którego prędkość wirowania zależy od częstotliwości sieci i od liczby biegunów silnika. $$n_{s} = 60\frac{f}{p}$$ Pole wirujące w stojanie, drogą indukcji powoduje przepływ prądu w prętach wirnika tworząc siłę elektromotoryczną i moment obrotowy wirnika. Prędkość obrotowa wirnika musi być zawsze mniejsza od prędkości synchronicznej wirującego pola. Różnicę tych prędkości nazywa się poślizgiem. $$S = \frac{n_{s}-n}{n_{s}}$$ $$S\text{ – poślizg}$$ $$n_{s}\text{ – prędkość synchroniczna (pola wirującego)}$$ $$n\text{ – prędkość asynchroniczna ( wirnika )}$$ 2. Rozruch silników: Bezpośredni – polega na przyłączeniu uzwojeń stojana bezpośrednio do sieci zasilającej bez urządzeń obniżających napięcie. Prąd pobierany podczas takiego rozruchu jest kilkakrotnie ( 3,5-8 ) razy większy od znamionowego a czas rozruchu zależy od trwania momentu obciążenia i momentu znamionowego. Przełącznikiem gwiazda-trójkąt – polega na połączeniu uzwojeń stojana w gwiazdę przed włączeniem silnika do sieci. Powoduje to zmniejszenie napięcia zasilającego uzwojenia a tym samym zmniejszy się moment rozruchowy i prąd pobierany z sieci w momencie rozruchu. Przed zakończeniem rozruchu, silnik należy połączyć w trójkąt aby pracował w swoich normalnych uzwojeń na tabliczce zaciskowej: a) przyłączenie faz do tabliczki zaciskowej; b) połączenie w gwiazdę; c) połączenie w trójkątUkład sterowania silnika klatkowego samoczynnym rozrusznikiem gwiazda-trójkąt obniżenie napięcia zasilającego przy użyciu autotransformatora rozruchowego lub oporników rozruchowych. Metodę tą stosuje się przy biegu luzem silnika lub zmniejszonym obciążeniu. Stosowanie silników z wirnikami dwuklatkowymi i głęboko żłobkowymi. W wirnikach dwuklatkowych stosuje się dwa zestawy prętów: zewnętrzne o mniejszej średnicy wewnętrzne o większej średnicy W tego typu wirnikach w czasie rozruchu wykorzystuje się zjawisko wypierania prądu powodujące zmniejszenie prądu rozruchowego. 3. Regulacja prędkości obrotowej. Prędkość obrotowa silników trójfazowych indukcyjnych zależy od prędkości wirowania pola. Prędkość tą można zmieniać przez: Zmianę biegunów – stojan silnika może mieć dwa oddzielne uzwojenia o różnych liczbach biegunów lub uzwojenie z przełączalną liczbą biegunów. Zmianę częstotliwości – wraz ze zmianą częstotliwości zmienia się prędkość wirowania pola. Przemienniki częstotliwości przekształcają prąd z sieci 50 Hz w prąd o regulowanej częstotliwości i napięciu. Odbywa się to przy zastosowaniu elementów elektronicznych. Przemienniki te składają się z prostownika pośredniczącego i falownika. Za pomocą takiego przemiennika uzyskuje się prędkość obrotową mniejsza lub większa niż synchroniczna. Aktualnie to rozwiązanie jest najbardziej rozpowszechnione w automatyzacji procesów napędowych ,a rozwój nowoczesnych technologii sugeruje iż ostatniego słowa jeszcze nie powiedziano 4. Zmiana kierunku wirowania: Przez zamianę przewodów zasilających ( przełącznik prawo-lewo ). Przez formowanie pola wirującego na drodze elektronicznej przez wysyłanie odpowiedniego rozkazu sterującego programowalnym sterownikiem przemysłowym. 5. Uwagi końcowe. Wraz z rozwojem elektroniki wprowadza się układy łagodnego rozruchu (soft start) oraz układy do regulowania prędkości obrotowej przemienniki częstotliwości (falowniki). Rozwój technologiczny i spadek kosztów układów falownikowych pozwalają coraz częściej stosować tego typu urządzenia dla silników klatkowych. Układy z regulacją obrotów umożliwiają uzyskanie znacznych oszczędności energii elektrycznej w wyniku doboru parametrów sieci do zmieniającego się obciążenia. A w niektórych napędach zwrot energii do sieci w momencie hamowania.
Zastosowanie silników elektrycznych. By InżynieriaABC. 9 października 2020. 0. 0. Nowoczesny świat, w którym przychodzi nam żyć, opiera się na najnowszych rozwiązaniach technologicznych, które są nieodzowną częścią naszej codzienności, bez względu na statut społeczny czy pochodzenie. Nawet najbardziej ubogie europejskie
Napędy i silniki elektryczne, sterowanie nimi, silniki BLDC, silniki prądu przemiennego i inne Prezentacje Dobór mikronapędów DC i kontrolerów ruchu Niewielkie silniki DC o dużej mocy mają kluczowe znaczenie dla rozwoju jeszcze bardziej zintegrowanych systemów. Są stosowane w wielu różnych... Piątek, 1 października 2021 Prezentacje Potrójna współpraca momentu obrotowego,... Wiele zastosowań wymaga napędu mającego centralny otwór, przez który mogą przechodzić np. kable, światło lub części urządzeń. Za przykłady mogą... Poniedziałek, 1 marca 2021 Poradnik implementacji Silniki BLDC (2). Określanie położenia wirnika Odkąd nauczyliśmy się wytwarzać, magazynować i przesyłać energię elektryczną stało się jasne, aby z niej korzystać w praktyce musi być... Środa, 1 kwietnia 2020 Prezentacje Nowa klasa dla momentu obrotowego i prędkości.... Nowe metalowe przekładnie planetarne GPT charakteryzują się kompaktową budową, dużym momentem obrotowym oraz wieloma precyzyjnymi stopniami... Niedziela, 1 marca 2020 Prezentacje Sterownik ruchu z zabezpieczeniem STO firmy... Firma Faulhaber wprowadziła na rynek nową serię sterowników ruchu z zapasowym wyłącznikiem bezpieczeństwa, zgodnym z zasadą STO (Safe Torque... Sobota, 1 czerwca 2019 Podzespoły Scalone sterowniki silników krokowych firmy... Żyjemy w czasach, w których na liniach produkcyjnych człowieka coraz częściej zastępuje robot. I wszystko wskazuje na to, że trend ten, czy tego... Niedziela, 30 września 2018 Podzespoły Mikroprocesorowe moduły SOM w aplikacjach... Do powszechnej obecności systemów mikrokontrolerowych w codziennym otoczeniu niepostrzeżenie przyzwyczailiśmy się na przestrzeni ostatnich... Sobota, 1 września 2018 Podzespoły Finezja wielkich mocy Sterowanie dużymi prądami to zadanie niebanalne, wymagające od projektanta układu dużej wiedzy i doświadczenia. Każdy, nawet najmniejszy błąd... Poniedziałek, 19 lutego 2018 Podzespoły Moduł dsPICDEM MCSM Silniki krokowe są szeroko stosowane w aplikacjach kontrolno-pomiarowych. Spotyka się je w drukarkach atramentowych typu ink-jet, obrabiarkach... Poniedziałek, 24 kwietnia 2017 Notatnik konstruktora Sterowanie jednofazowymi, bezszczotkowymi... W aplikacjach małej mocy, w których istotny jest koszt, a wymagania odnośnie uzyskiwanego momentu obrotowego są małe, jednofazowe, bezszczotkowe... Piątek, 4 listopada 2016 Podzespoły Nowa generacja sterowników silników Nowa rodzina układów NovalithIC firmy Infineon zawiera układ scalony kontrolera oraz tranzystory MOSFET w pojedynczej obudowie. Dystrybutor... Czwartek, 3 listopada 2016 Projekty EP Sterownik silnika do napędu Prezentowane urządzenie służy do sterowania silnikiem prądu stałego i umożliwia jego pracę w obu kierunkach obrotu przy regulowanej prędkości... Piątek, 30 września 2016 Koktajl newsów Konstruktorzy z WAT i AGH opracowali samochód z... Pierwsze polskie auto na wodór o nazwie Hydrocar Premier to najnowsze dzieło polskiej myśli technicznej. Poniedziałek, 8 sierpnia 2016 Notatnik konstruktora Podstawy sterowania silnikiem BLDC Silnik BLDC ma wiele zalet. Do najważniejszych zaliczyłbym niewielkie wymiary i mały ciężar przy jednocześnie dużej mocy i sprawności. Pozwala to... Niedziela, 1 listopada 2015 Notatnik konstruktora Silniki BLDC - klasyczne metody sterowania W artykule przedstawiono kryteria podziału klasycznych metod sterowania bezszczotkowymi silnikami prądu stałego, rodzaje tych metod oraz omówiono... Niedziela, 1 listopada 2015 Prezentacje Silniki BLDC - napęd przyszłości Od komponentów do gotowego produktu. Od koła do roweru. Od diody LED do telebimu. Firma MiroMax stara się przewidzieć przyszłość i przyszłe... Niedziela, 1 listopada 2015 Podzespoły Samochodowe mikrokontrolery RL78/Fx w... Bezszczotkowe silniki prądu stałego są coraz częściej wykorzystywane w najnowszych konstrukcjach samochodów. Ich zastosowanie ma wiele zalet w... Poniedziałek, 1 czerwca 2015 Automatyka Sterowanie silnikiem skokowym za pomocą... Sterowniki S7-1500 są przystosowane do bezpośredniego sterowania pracą silników skokowych. Silniki takie są szeroko stosowane w urządzeniach, w... Wtorek, 1 lipca 2014 E-Prenumerata Natychmiastowy dostęp do najnowszych treści oraz pełnego archiwum kup teraz
silnika elektrycznego bezszczotkowego na prąd stały, czujnika momentu obrotowego, czujnika prędkości jazdy, znajdującego się w skrzyni biegów. Elektroniczny układ wspomagania analizuje zachowanie samochodu z czujników i zależnie od wykonanego ruchu kierownicą, aktywuje elektryczny mechanizm ślimakowy.
Z definicji silnik elektryczny jest maszyną elektryczną, w której energia elektryczna jest przetwarzana na energię mechaniczną. Zdecydowana większość maszyn elektrycznych opiera się na zasadzie indukcji elektromagnetycznej. Maszyna elektryczna składa się z części stałej, którą jest stojan (dla asynchronicznych i synchronicznych maszyn prądu zmiennego), części ruchomej – wirnika (dla asynchronicznych i synchronicznych maszyn prądu zmiennego) lub twornika (dla maszyn prądu stałego). Zasada działania asynchronicznego silnika elektrycznego Magnesy stałe są bardzo często stosowane jako induktory w silnikach prądu stałego małej mocy. Gdy stojan jest podłączony do sieci elektrycznej, w jego wnętrzu wytwarzane jest okrągłe, wirujące pole magnetyczne, które przenika przez zwarte uzwojenie wirnika i indukuje prąd indukcyjny. Stąd, zgodnie z prawem Ampere’a (siła odchylająca działa na przewodnik z prądem umieszczonym w polu magnetycznym), wirnik zaczyna się obracać. Prędkość obrotowa wirnika zależy od częstotliwości napięcia zasilającego i liczby par biegunów magnetycznych. Różnica pomiędzy prędkością obrotową pola magnetycznego stojana a prędkością obrotową wirnika charakteryzuje się poślizgiem. Silnik nazywany jest asynchronicznym, ponieważ prędkość obrotowa pola magnetycznego stojana nie jest taka sama jak prędkość obrotowa wirnika. Synchroniczny silnik elektryczny jest inny w konstrukcji wirnika. Wirnik jest albo magnesem stałym, albo elektromagnesem, albo posiada część klatkową (startową) i magnesy stałe lub elektromagnesy. W silniku synchronicznym prędkość obrotowa pola magnetycznego stojana i prędkość obrotowa wirnika są takie same. Do rozruchu stosuje się pomocnicze silniki asynchroniczne lub wirnik klatkowy. Silniki asynchroniczne znalazły szerokie zastosowanie we wszystkich gałęziach techniki. Dotyczy to w szczególności prostych i wytrzymałych trójfazowych silników asynchronicznych z wirnikami klatkowymi, które są bardziej niezawodne i tańsze niż wszystkie silniki elektryczne i nie wymagają praktycznie żadnej konserwacji. Nazwa „asynchroniczny” odnosi się do faktu, że w takim silniku wirnik nie obraca się synchronicznie z polem wirującym stojana. W przypadku braku linii trójfazowej, silnik asynchroniczny może być podłączony do linii jednofazowej.
Zgodnie z obowiązującym prawem moc takiego urządzenia nie powinna przekraczać 250W, prędkość maksymalna osiągana z pomocą silnika nie może przekraczać 25km/h. Nasz przykładowy rower elektryczny wyposażono w silnik Bosch Active Line o mocy 250W, który chwilowo potrafi wygenerować 400W, pomagając momentem obrotowym 40Nm.
Silnik elektryczny jest elementem doskonale znanym każdemu. To właśnie dzięki niemu możliwe jest przekształcenie energii elektrycznej w mechaniczną, co wykorzystywane jest w wielu maszynach, urządzeniach i pojazdach. Działanie tych elementów w głównej mierze opiera się na interakcji między silnikiem w polu magnetycznymi uzwojeniem prądu do generowania siły w postaci obrotu. Mogą być one klasyfikowane wedle kilku względów, takich jak źródło zasilania, budowa wewnętrzna, aplikacja oraz rodzaj ruchu wyjściowego. Różnice pomiędzy silnikiem elektrycznym, a spalinowym Do najpopularniejszych rodzajów silników w obecnych czasach możemy z pewnością zaliczyć silnik elektryczny oraz spalinowy. Oba różnią się od siebie znacząco, głównie mocą oraz momentem obrotowym. W przypadku silnika spalinowego oba te elementy uzależnione są od prędkości obrotowej. Z kolei silnik elektryczny maksymalny moment obrotowy może osiągnąć już na starcie. To właśnie ta cecha sprawia, że pojazd z napędem elektrycznym ma znacznie lepszą dynamikę oraz przyspieszenie od modelów spalinowych. Również zasada zmiany pierwotnej energii na wykonanie ruchu mechanicznego jest odmienna w obu przypadkach. Silnik spalinowy, jak każdy z nas doskonale wie, potrzebuje paliwa, w czasie przemiany chemicznej i termodynamicznej. Z kolei w przypadku silnika elektrycznego dochodzi do przepływu prądu, podczas której wykorzystywane są przemiany elektro- oraz magnetodynamiczne. Ponadto silnik spalinowy wyposażony jest w znacznie większą liczbę elementów składniowych takich jak cylindry, tłoki, zawory, wał korbowy oraz wiele wiele innych. W przypadku silnika elektrycznego są to jedynie stojan i wirnik. Zużycie energii w pojazdach wykorzystujących działanie silnika elektrycznego podawane jest w kilowatogodzinach na 100 kilometrów jazdy. Ponadto wyświetlana jest również informacja o ilości energii odzyskiwanej i gromadzonej z powrotem w akumulatorze. Silnik elektryczny wiąże się ze znacznie większą wygodą. Jak wiemy w przypadku silnika spalinowego konieczna jest regularna wymiana oleju, filtra paliwa oraz filtra powietrza. Jako, że ruchoma część silnika elektrycznego składa się jedynie z wirnika, nie jest konieczna częsta ingerencja czy też kontrola jego stanu. To właśnie sprawia, że coraz więcej osób decyduje się na inwestycję w pojazdy z silnikiem elektrycznym.
. 275 326 388 413 250 284 279 40
budowa i działanie silnika elektrycznego